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S U M M A R Y

Background: Surveillance for healthcare-associated infections such as healthcare-
associated urinary tract infections (HA-UTI) is important for directing resources and
evaluating interventions. However, traditional surveillance methods are resource-
intensive and subject to bias.
Aim: To develop and validate a fully automated surveillance algorithm for HA-UTI using
electronic health record (EHR) data.
Methods: Five algorithms were developed using EHR data from 2979 admissions at Kar-
olinska University Hospital from 2010 to 2011: (1) positive urine culture (UCx); (2) positive
UCx þ UTI codes (International Statistical Classification of Diseases and Related Health
Problems, 10th revision); (3) positive UCx þ UTI-specific antibiotics; (4) positive UCx þ
fever and/or UTI symptoms; (5) algorithm 4 with negation for fever without UTI symptoms.
Natural language processing (NLP) was used for processing free-text medical notes. The
algorithms were validated in 1258 potential UTI episodes from January to March 2012 and
results extrapolated to all UTI episodes within this period (N ¼ 16,712). The reference
standard for HA-UTIs was manual record review according to the European Centre for
Disease Prevention and Control (and US Centers for Disease Control and Prevention) def-
initions by trained healthcare personnel.
Findings: Of the 1258 UTI episodes, 163 fulfilled the ECDC HA-UTI definition and the
algorithms classified 391, 150, 189, 194, and 153 UTI episodes, respectively, as HA-UTI.
Algorithms 1, 2, and 3 had insufficient performances. Algorithm 4 achieved better per-
formance and algorithm 5 performed best for surveillance purposes with sensitivity 0.667
(95% confidence interval: 0.594e0.733), specificity 0.997 (0.996e0.998), positive pre-
dictive value 0.719 (0.624e0.807) and negative predictive value 0.997 (0.996e0.997).
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Conclusion: A fully automated surveillance algorithm based on NLP to find UTI symptoms
in free-text had acceptable performance to detect HA-UTI compared to manual record
review. Algorithms based on administrative and microbiology data only were not
sufficient.

ª 2021 Published by Elsevier Ltd on behalf of The Healthcare Infection Society.
Introduction

Healthcare-associated infections (HCAIs) annually affect
millions of patients, are a major burden for the healthcare
system, and are associated with prolonged hospital stay,
increased morbidity, mortality, and costs [1e3]. Healthcare-
associated urinary tract infections (HA-UTIs) account for
nearly 20% of all HCAIs, affecting nearly 870,000 patients yearly
in Europe [3].

A significant proportion of HCAIs can be prevented [1].
Therefore, to allocate necessary resources and evaluate the
effect of interventions, continuous surveillance with feedback
to healthcare personnel and stakeholders is important [4,5].
Much HCAI surveillance is currently based on time-consuming
and resource-intensive manual review of patient records,
which is also prone to subjective interpretation and surveil-
lance bias [6e8].

With the use of electronic health records (EHRs), there is
increasing access to detailed electronic health data. This dig-
italization allows automated surveillance systems to replace
manual approaches and to generate standardized and con-
tinuous surveillance data [9]. However, surveillance algorithms
need to be thoroughly validated before being implemented in a
clinical setting.

In this study, the aim was to develop a fully automated rule-
based surveillance algorithmusing EHR data for the detection of
HA-UTI in hospitalized patients, and validate it against manual
record review according to the HA-UTI definitions of, primarily,
the European Centre for Disease Prevention and Control (ECDC)
and, secondly, the US Centers for Disease Control and Pre-
vention (CDC). To demonstrate a possible use-case, the best-
performing algorithm was used to determine HA-UTI incidence
during a three-year period in all hospitalized patients.

Methods

Study design and data source

This retrospective observational study was performed at the
Karolinska University Hospital (KUH) in Stockholm, Sweden. We
used prospectively entered routine healthcare data from the
electronic health record (EHR) stored as a duplicate of the
operating EHR system in a research databank called Health
Bank e Swedish Health Record Research Bank, comprising all
patients receiving care at KUH between 2006 and 2013 [10].
Data included demographics, hospital administrative data,
International Classification of Diseases (ICD)-10 codes, micro-
biological results, clinical chemistry results, physiological
parameters, medication, and medical notes. The study pop-
ulation consisted of hospitalized patients aged �18 years
between 2010 and 2013, the most recent period available
(Figure 1). Patients admitted to obstetric wards were excluded
because of lack of complete data. The study was approved by
the Regional Ethical Review Board in Stockholm under per-
mission nos. 2016/2309-32 and 2012/1838-31/3.

The algorithms were functionally developed using a devel-
opment dataset of all 2979 admissions with a positive urine
culture (UCx) from July 2010 to March 2011. Additionally, to
perform natural language processing (NLP), this dataset was
complemented with annotated free-text about UTI symptoms
from 200 admissions with positive UCx from 2012 (selected so
that they did not overlap with the validation dataset). To assess
algorithm performance, admissions from a validation period
cohort from January to March 2012 (N ¼ 15,986) were divided
into three separate groups: (1) admissions with at least one
positive UCx (N ¼ 679), (2) admissions with only negative UCx
(N ¼ 1913), and (3) admissions without UCx performed (N ¼
13,394) (Figure 1).

From this validation period cohort, a validation dataset of
admissions (N¼ 933), inwhichUTI presence or notwas classified
based on medical record review as the reference standard, was
selected based on the three admission groups. From admission
group 1, the admissions with positive UCx, 533 admissions were
selected and annotated, stratified based on day of culture, for
the validation dataset. To include patients most likely to have
HA-UTI, all admissions were included when positive UCx were
only present on day 3 or later of admission (N ¼ 375), or when
positive UCx were present on day 1 or 2 and on day 3 or later of
admission (N ¼ 14). To include patients most likely to have
community-acquired (CA)-UTI, all admissions during one month
(January 2012) were included in which positive UCx were only
present on day 1 or 2 of admission (N¼ 144). From the admission
groups 2 and 3, admissions with only negative UCx or without
UCx performed, 200 randomly sampled admissions per group
were selected and annotated for the validation dataset. All
performedUCx during admissionwere regarded as potential UTI
episodes, and an admission with no UCx counted as one poten-
tial UTI episode.

The medical record review was performed by five trained
professionals and UTI classification was based on the ECDC and
CDC definitions (see below). As a run-in period, six patients
were reviewed together, and further reviewing was performed
independently with an overlap of 70 patients. There was sub-
stantial agreement between reviewers, with Cohen’s k of
0.82e1.00 for UTI classification. Complicated cases were
classified using a consensus decision. The reviewers were
blinded to the results of the algorithms.
Case definitions of HA-UTI

The rule-based algorithms were developed to detect
microbiologically confirmed symptomatic HA-UTIs according to
the definitions of ECDC (UTI-A definition) and CDC [11,12].
Symptomatic UTIs that were not microbiologically confirmed
(ECDC UTI-B definition) were not assessed. Furthermore, HA-
UTI were categorized as urinary catheter (CAD; catheter à
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Figure 1. Flow chart of study. *Selected so that they did not overlap with the validation dataset. CA, community-acquired; CAD, urinary
catheter (catheter à demeure); HA, healthcare-associated; UCx, urine culture; UTI, urinary tract infection. UTI episode: all performed
UCx were regarded as potential UTI episodes during an admission, and admissions with no UCx counted as one potential UTI episode.
Positive UCx: urine culture with �2 pathogens and with at least one pathogen having >105 colony-forming units (cfu) per millilitre of
urine. Negative UCx: urine culture with >2 pathogens, only mixed flora or �2 pathogens with �105 cfu per millilitre of urine.

S.D. van der Werff et al. / Journal of Hospital Infection 110 (2021) 139e147 141
demeure)-associated or not, as described by ECDC and CDC.
When multiple episodes during an admission fulfilled the UTI
criteria, a window of 14 days, based on the culture date, after
the first positive episode was applied where no new HA-UTI
episodes could be registered. If the criteria were met again
after those 14 days, a new episode of HA-UTI could be regis-
tered, similar to the Repeat Infection Timeframe (RIT) criteria
of the CDC [12].
Algorithms

Five possible rule-based algorithms for the detection of UTI
were developed in the development dataset (Figure 2):

1. Positive UCx;
2. Positive UCx combined with UTI related ICD-10 codes

(Appendix Table A.1) recorded during admission;
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3. Positive UCx combined with UTI-specific antibiotics
(Appendix Table A.1);

4. Positive UCx combined with fever and/or UTI symptoms (in
accordance with ECDC and CDC definitions, respectively);

5. Algorithm 4 with negating rule for cases with fever and
without UTI symptoms by non-correspondent positive blood
cultures (BCx) or relevant ICD-10 codes (Appendix
Table A.1).

Positive UCx was defined as UCx with not more than two
pathogens (any bacteria or fungi except mixed flora) and with
at least one pathogen having >105 colony-forming units (cfu)
per millilitre of urine. UTI-specific antibiotics were considered
when started one day before to seven days after the positive
UCx. Fever, UTI symptoms, and non-correspondent positive
BCx were taken into account when present within two days
before or after the positive UCx. UTIs were defined as
healthcare-associated (HA) when the UCx was taken two days
or more after admission (on day 3 of admission where admission
is day 1) or within two days after admission (on day 1 or 2 of
admission) if a previous admission within 48 h was present. HA-
UTIs were defined as CAD-associated when a CAD term was
present within seven days before the UCx. The earlier descri-
bed RIT period of 14 days was also used by the algorithms to
assess when another UTI episode could be registered when
multiple potential UTI episodes were present during one
admission. Consequently, during admissions of more than 14
days when multiple UTI episodes more than 14 days apart from
each other were present, one CA-UTI and/or one or more HA-
UTIs could potentially be classified during one single admission.

Fever could be present as a numeric measurement value
recorded in the EHR, but also described in free-text medical
notes. The UTI symptoms, i.e. urgency, frequency, dysuria,
suprapubic tenderness, or costovertebral angle pain or ten-
derness (last only used for CDC algorithms), and presence of
CAD were only described in free-text medical notes. NLP was
used to detect fever, UTI symptoms, and CAD presence in these
medical notes. Regular expressions (regex) were built to
automatically detect phrases and terms in sentences of medi-
cal notes. These were based on the annotated medical notes
from the development dataset for UTI symptoms and for fever
and CAD presence on the expert opinion of medical doctors.
Negation cues present in the same sentence were used to
determine whether UTI symptoms were negated (e.g. ‘no
dysuria present’, ‘urgency not mentioned by patient’). A more
complex NLP approach based on the annotated medical notes
was explored. As this increased the sensitivity to a small
extent, but largely decreased the specificity, this approach was
eventually not used in the study.
Statistical analysis

Data handling and algorithm calculations were performed
using Python version 3.7. The programme pyConTextNLP ver-
sion 0.7.0.0 was used for the NLP to detect UTI-symptom regex
Statistical Classification of Diseases and Related Health Problems 10th R
urinary tract infection. UTI symptoms: urgency, frequency, dysuria, a
suprapubic tenderness and/or costovertebral angle pain or tenderness
least one pathogen having >105 colony-forming units (cfu) per milli
potential UTI episodes during an admission, and admissions with no U
(with negation cues), and fever and CAD regex (without neg-
ation cues) [13,14]. Statistical analyses were performed using R
version 3.6.1 [15]. Continuous variables are presented as
median with interquartile ranges and categorical variables as
numbers with percentages. For algorithm performance, the
sensitivity, specificity, positive predictive value (PPV) and
negative predictive value (NPV) were assessed. The confidence
intervals (CIs) for these estimates in the validation dataset
were calculated using the asymptotic variance with Wilson
score method [16].

The results of the algorithms from the validation dataset
were extrapolated to the validation period cohort of
JanuaryeMarch 2012 to obtain correct performance estimates
of the algorithms in the intended target population who are all
hospitalized patients (Figure 1) [17]. This extrapolation was
done based on the sampling proportion of the validation
dataset from the validation period cohort within the separate
admission-groups. The CIs for these estimates were calculated
as the 2.5th and 97.5th percentiles of point estimates obtained
from 10,000 bootstrap samples for each of the five groups using
the R package ‘boot’ [18]. To account for uncertainty, the
bootstrapping was performed before extrapolating the pro-
portions from the validation dataset to the validation period
cohort. Area under the receiver operating characteristic (ROC)
curve (AUC) was determined using the R package ‘pROC’ [19].
Finally, the best performing algorithm was applied to the data
of 2011e2013 to show how the incidence of HA-UTI by con-
tinuous surveillance would look.
Results

In the validation dataset among the 533 admissions with at
least one positive UCx, 821 UCx were performed. In the 200
admissions with only negative UCx, 237 UCx were performed.
Together with 200 admissions with no UCx performed, this
amounted to 1258 potential UTI episodes in the validation
dataset used for the calculations of algorithm performance
(Table I and Figure 1). In the admissions of the validation period
cohort (N¼15,986) of January to March 2012 there were 16,712
potential UTI episodes used for the calculation of extrapolated
algorithm performance (Figure 1). The patients within the
validation dataset with a positive UCx were older and consisted
of more females than the patients with negative or no UCx
(Table I). The length of hospital stay, ICU admissions, and in-
hospital mortality were highest in admissions with at least
one positive UCx and lowest in admissions with no UCx.

No UTIs, according to the ECDC UTI-A or CDC definition,
were identified during manual record review in admissions with
only negative UCx or no UCx. Among the 821 potential UTI
episodes in admissions with positive UCx in the validation
dataset, 163 UTI episodes (19.9%) fulfilled ECDC HA-UTI (UTI-A)
definition and 166 UTI episodes (20.2%) fulfilled CDC HA-UTI
definition. The five algorithms classified 391 (47.6%), 150
(18.3%), 189 (23.0%), 194 (23.6%), and 153 (18.6%) UTI epi-
sodes, respectively, as ECDC HA-UTI. In Appendix Tables A.2
evision; RIT, Repeat Infection Timeframe; UCx, urine culture; UTI,
nd/or suprapubic tenderness (ECDC)/urgency, frequency, dysuria,
(CDC). Positive UCx: urine culture with �2 pathogens and with at
litre of urine. UTI episode: all performed UCx were regarded as
Cx counted as one potential UTI episode.



Table I

Characteristics of admissions or patients in validation cohort

Characteristics All Positive UCx Negative UCx No UCx

No. of UTI episodes/no. of urine cultures (% of all) 1258 (100) 821 (65.3) 237 (18.8) 200 (15.9)
No. of admissions (% of all) 933 (100) 533 (57.1) 200 (21.4) 200 (21.4)
No. of patients (% of all) 915 (100) 525 (57.4) 192 (21.0) 198 (21.6)
No. of females (% of patients) 555 (60.7) 356 (67.8) 95 (49.5) 104 (52.5)
Age (years), median (IQR) of admissions 72 (59e81) 76 (65e85) 69.5 (55e79) 62.5 (47e73)
Length of stay (days), median (IQR) of admissions 8 (4e16) 12 (6e22) 7 (3e13) 4 (2e7)
No. of ICU admissions (% of admissions) 109 (11.7) 81 (15.2) 19 (9.5) 9 (4.5)
No. of in-hospital mortalities (% of admissions) 36 (3.9) 28 (5.5) 7 (3.5) 1 (0.5)
No. of ECDC HA-UTIs (% of episodes) 163 (13.0) 163 (19.9) 0 0
No. of ECDC CAD-associated HA-UTIs (% of episodes) 109 (8.7) 109 (13.3) 0 0
No. of ECDC CA-UTIs (% of episodes) 62 (4.9) 62 (7.6) 0 0
No. of CDC HA-UTIs (% of episodes) 166 (13.1) 166 (20.2) 0 0
No. of CDC CAD-associated HA-UTIs (% of episodes) 95 (7.6) 95 (11.6) 0 0
No. of CDC CA-UTIs (% of episodes) 62 (4.9) 62 (7.6) 0 0
No. of ECDC and/or CDC HA-UTIs (% of episodes) 181 (14.4) 181 (22.0) 0 0
No. of ECDC and/or CDC CAD-associated HA-UTIs (% of episodes) 125 (9.9) 125 (15.2) 0 0
No. of ECDC and/or CDC CA-UTIs (% of episodes) 71 (5.6) 71 (8.6) 0 0

UCx, urine culture; UTI, urinary tract infection; IQR, interquartile range; ICU, intensive care unit; ECDC, European Centre for Disease Prevention
and Control; HA, healthcare-associated; CAD, urinary catheter (catheter à demeure) CA, community-acquired; CDC, US Centers for Disease Control
and Prevention.
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and A.4eA.6 the number of true positives, false positives, false
negatives, and true negatives within the different groups and
for the five algorithms are shown for the ECDC HA-UTI, CDC HA-
UTI, ECDC CAD-associated HA-UTI and CDC CAD-associated HA-
UTI outcome, respectively. The reasons for the differences in
classification between algorithms 4 and 5 for the ECDC HA-UTI
outcome is shown in Appendix Table A.3.

The algorithm based on positive UCx only (algorithm 1) had a
high sensitivity but a low PPV to classify HA-UTI according to
the ECDC definition (Table II). The algorithm based on positive
Table II

Performance characteristics of five rule-based algorithms for classifyin
definition UTI-A

Algorithm Sensitivity (95% CI) Specificity (95% CI) P

Validation dataset with admissions with at least one positive UCx (UT
1 0.933 (0.883e0.962) 0.637 (0.599e0.673) 0.389
2 0.399 (0.327e0.475) 0.871 (0.843e0.894) 0.443
3 0.577 (0.500e0.650) 0.856 (0.827e0.880) 0.497
4 0.730 (0.657e0.792) 0.886 (0.859e0.908) 0.613
5 0.675 (0.600e0.742) 0.935 (0.913e0.951) 0.719
Extrapolated results to validation period cohort (UTI episodes N ¼ 16
1 0.921 (0.885e0.952) 0.986 (0.984e0.987) 0.389
2 0.394 (0.321e0.467) 0.995 (0.994e0.996) 0.433
3 0.570 (0.491e0.648) 0.994 (0.993e0.995) 0.497
4 0.721 (0.655e0.782) 0.995 (0.994e0.997) 0.613
5 0.667 (0.594e0.733) 0.997 (0.996e0.998) 0.719

ECDC, European Centre for Disease Prevention and Control; UTI, urinary tr
value; AUC, area under the receiver operating characteristic (ROC) curve;
The extrapolated results of the algorithms from the validation dataset to th
proportion of potential UTI-episodes from the five different groups: (1) adm
of admission; (2) admissions with a positive UCx both on day 1 or 2 and on da
on day 1 or 2 of admission; (4) admissions with only negative UCx and; (5)
UCx and UTI-related ICD-10 codes (algorithm 2) had a low
sensitivity although the PPV increased compared to the pre-
vious algorithm. In the algorithm that used positive UCx with
UTI-specific antibiotics (algorithm 3), the sensitivity and PVV
increased compared to algorithm 2. The algorithm that was
based on adding fever and UTI symptoms through text-mining
of free-text to positive UCx (algorithm 4) had a sensitivity of
0.721 (95% CI: 0.655e0.782) and PPV of 0.613 (0.532e0.694) in
the validation period cohort. The algorithm that added to
algorithm 4 a negating rule for cases with fever without
g healthcare-associated urinary tract infection according to ECDC

PV (95% CI) NPV (95% CI) AUC (95% CI)

I episodes N ¼ 821)
(0.342e0.438) 0.974 (0.955e0.986) 0.785 (0.758e0.811)
(0.357e0.513) 0.854 (0.825e0.879) 0.635 (0.595e0.673)
(0.427e0.568) 0.891 (0.864e0.913) 0.716 (0.676e0.757)
(0.543e0.679) 0.930 (0.907e0.947) 0.808 (0.772e0.844)
(0.643e0.784) 0.921 (0.898e0.939) 0.805 (0.768e0.842)
,712)
(0.356e0.422) 0.999 (0.999e1.000) 0.953 (0.933e0.974)
(0.335e0.535) 0.994 (0.993e0.995) 0.694 (0.657e0.732)
(0.413e0.585) 0.996 (0.995e0.996) 0.782 (0.744e0.820)
(0.532e0.694) 0.997 (0.997e0.998) 0.858 (0.824e0.893)
(0.624e0.807) 0.997 (0.996e0.997) 0.832 (0.796e0.868)

act infection; PPV, positive predictive value; NPV, negative predictive
CI, confidence interval; UCx, urine culture.
e validation period cohort (JaneMar 2012) were based on the sampling
issions with a positive urine culture (UCx) only present on day 3 or later
y 3 or later of admission; (3) admissions with a positive UCx only present
admissions without a UCx.
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UTI symptoms by non-correspondent positive BCx or relevant
ICD-10 codes (algorithm 5) resulted in slightly decreased
sensitivity of 0.667 (0.594e0.733) but an increase in PPV to
0.719 (0.624e0.807). In the validation period cohort
(extrapolated data), the specificity and NPV was high for all
five algorithms.

The sensitivity of algorithm 4 to detect HA-UTI according to
CDC definition compared to ECDC definition was slightly higher,
while the PPV was similar (Appendix Table A.7). For algorithm
5, sensitivity and PPV were somewhat lower to detect CDC HA-
UTI compared to ECDC HA-UTI. The sensitivity and PPV of
algorithm 4 and 5 to detect CAD-associated HA-UTI were lower
compared to HA-UTI regardless of CAD presence, both for ECDC
and CDC HA-UTI (Appendix Tables A.8 and A.9).

Algorithm 5 was used to show what the incidence rate of
ECDC HA-UTI over the period 2011e2013 would look like
(Appendix Figure A.1). The algorithm-determined hospital-
wide incidence rate ranged from 0.92 to 1.73 per 1000 bed-days
and was quite stable over time. When analysing specific ward
specialties, it can be seen that, compared to the hospital-wide
trend, the incidence rate was similar in internal medicine
wards, similar but more fluctuating in surgery wards, and
higher in geriatric wards.
Discussion

This study shows that by using EHR data and NLP it is possible
to develop an acceptable and fully automated algorithm for
microbiologically confirmed symptomatic HA-UTI. Such an
algorithm may be used for surveillance purposes and could be
implemented to replace manual surveillance by record review.

This study explored whether simple algorithms, based on (i)
microbiology only or (ii) a combination of microbiology results
with UTI ICD-10 codes or UTI-specific antibiotics, could be
sufficient to assess HA-UTIs or whether more sophisticated
algorithms, e.g. by using NLP, would be necessary. The former
kind of algorithms would be easier to implement in different
kinds of systems and circumstances than the latter. However,
the results indicate that an algorithm relying on microbiology
only would lead to an overestimation of the incidence of HA-
UTI, whereas relying on the combination of microbiology and
ICD-10 codes would lead to an underestimation of the inci-
dence. An algorithm relying on microbiology and antibiotics
performed slightly better but would result in overestimation of
the incidence. These findings correspond with the results of a
recent systematic review on the performance of different
algorithms for automated surveillance systems of HCAIs,
including UTI, concluding that ICD coding has a low sensitivity
and that microbiology results alone are typically not sufficient
[20]. More sophisticated algorithms using more parameters and
techniques such as NLP had better performances, which was
also the case in this study. For epidemiological surveillance,
higher specificity and PPV are of importance and the combi-
nation of microbiology with presence of UTI symptoms (algo-
rithm 4) reduced the number of false-positives. The algorithm
adding a negating rule for cases with fever and without UTI
symptoms (algorithm 5) had a sensitivity that was only slightly
reduced compared to algorithm 4, but further improved the
PPV.

The algorithms performed similarly for the detection CDC
HA-UTI compared to ECDC HA-UTI; only the algorithms for CAD-
associated CDC HA-UTIs performed slightly worse compared to
the ECDC version. This might be explained by the fact that the
timeframe to look for CAD was based on ECDC criteria rather
than CDC criteria, whereas UTI symptoms for ECDC versus CDC
algorithms were based on their respective differences in defi-
nitions. However, these results show that the definitions of
ECDC and CDC are close enough for algorithms to have similar
performance for surveillance purposes.

Studies have tried to develop surveillance algorithms for
(CAD-associated) HA-UTI [21e38]. Compared to these studies,
the specificity and NPV of the best algorithm in this study was
similar to that of the other studies. Compared to semi-
automated surveillance algorithms, the sensitivity and PPV
was lower in this study [21e34]. By contrast, compared to other
fully automated surveillance algorithms, the sensitivity and
PPV of algorithms 4 and 5 in this study were in general slightly
better but in a similar range [35e38]. Fully automated algo-
rithms with both high sensitivity and specificity are difficult to
develop, and the algorithms developed in our study are at
present useful for surveillance but not for diagnostic purposes.
However, the development of diagnostic algorithms with both
high sensitivity and specificity would be beneficial for decision
support systems.

A major strength of this study is that it is based on a large
dataset that is representative of the clinical population forwhich
the algorithm is designed. Furthermore, comprehensive EHR
data were used, facilitating implementation in a real clinical
setting. Also, theNLPmethodused isoneof the simplestmethods
and should be less troublesome to apply in different settings than
more complicated methods. Finally, the manual annotation has
been done according to the internationally recognized defi-
nitions of ECDC and CDC, increasing the comparabilitywith other
studies. Limitations include that the developed algorithms have
not been validated in obstetric andpaediatric populations. Yet in
the obstetric admissions hardly any positive UCx were present
and in children the rate of HA-UTI is lower compared to adults, so
they would probably not greatly influence the results [39]. Even
though the algorithms were developed in a copy of EHR data,
they have not yet been implemented and evaluation in real-life
settings is warranted. Additionally, the algorithms need to be
tested in other hospitals/EHR systems to assess generalizability.
Although a simple method of NLP has been used for the algo-
rithms, this algorithm is not directly applicable to other lan-
guages and the regex would need to be adapted accordingly and
the algorithms revalidated. As the best-performing algorithm
partly uses ICD-10 codes for the negation of fever without UTI
symptoms, and ICD-10 codes are mostly recorded in the EHR at
discharge, this reduces the applicability of this algorithm to some
extent for real-time surveillance of HA-UTI. Although the
developed fully-automated surveillance algorithm could replace
manual surveillance, this system would need readjustment and
validation as registration and reporting of elements within the
algorithm change over time. The performance of algorithms will
also depend on how well the different elements are recorded in
the EHR system, but this also applies to manual surveillance by
record review. There were no quality assurance data available
for the different components used for the record review and
algorithm classification in this study to assess the possible error
arising from this. Finally, the algorithms were developed to
assessmicrobiologically confirmed symptomaticHA-UTIs, so they
do not apply to microbiologically non-confirmed symptomatic
HA-UTIs (UTI-B definition of ECDC).
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Semi-automated algorithms are likely to outperform fully
automated algorithms, but this still means that time-
consuming manual annotation will be necessary and sub-
jectivity in assessing UTIs or other HCAIs will remain present. If
one wants to use the system for correct assessment of HCAIs on
the individual patient level for diagnostic and clinical reasons,
then semi-automated approaches are probably the most suit-
able. However, if the individual patient’s treatment is not the
focus, then fully automated algorithms are an option. This can
be used for continuous and real-time surveillance on HCAIs,
which will give more direct feedback to wards about their
disease burden and will help to assess the effect of infection
prevention and control (IPC) interventions more effectively.
Furthermore, fully automated surveillance is easier to scale
up, can be used on larger populations or in surveillance net-
works, and can be more standardized and objective if thor-
oughly validated in the settings where it will be used. This is
very useful for public reporting or other situations when one
wants to compare different healthcare facilities. Fully auto-
mated surveillance ideally should be developed for all the
major HCAIs and thereby preferably not only focus on device-
associated HCAI, e.g. UTI vs CAD-associated UTI, to be useful
for quality improvement of healthcare and supporting IPC in a
broad sense. The use of NLP was useful in this study and
developments in machine learning may further improve the
performance of fully automated algorithms [40]. Future
research should explore these possibilities.

In conclusion, a fully automated surveillance algorithm for
HA-UTI e based on positive urine culture combined with simple
NLP for UTI symptom detection and negation of fever when
being the sole symptom, and using EHR data e performed well
compared to manual record review. This algorithm can be used
for continuous surveillance of HA-UTI and may replace manual
surveillancewith the benefit of quick, continuous, standardized
and objective feedback to healthcare personnel and effective
evaluation of interventions to reduce the incidence of HA-UTI.
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